brms - Bayesian Regression Models using 'Stan'
Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Bürkner (2018) <doi:10.32614/RJ-2018-017>; Bürkner (2021) <doi:10.18637/jss.v100.i05>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
Last updated 2 days ago
bayesian-inferencebrmsmultilevel-modelsstanstatistical-models
16.49 score 1.3k stars 31 packages 13k scripts 24k downloadsposterior - Tools for Working with Posterior Distributions
Provides useful tools for both users and developers of packages for fitting Bayesian models or working with output from Bayesian models. The primary goals of the package are to: (a) Efficiently convert between many different useful formats of draws (samples) from posterior or prior distributions. (b) Provide consistent methods for operations commonly performed on draws, for example, subsetting, binding, or mutating draws. (c) Provide various summaries of draws in convenient formats. (d) Provide lightweight implementations of state of the art posterior inference diagnostics. References: Vehtari et al. (2021) <doi:10.1214/20-BA1221>.
Last updated 9 days ago
bayesbayesianmcmc
16.05 score 167 stars 319 packages 3.6k scripts 48k downloadsthurstonianIRT - Thurstonian IRT Models
Fit Thurstonian Item Response Theory (IRT) models in R. This package supports fitting Thurstonian IRT models and its extensions using 'Stan', 'lavaan', or 'Mplus' for the model estimation. Functionality for extracting results, making predictions, and simulating data is provided as well. References: Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>; Bürkner et al. (2019) <doi:10.1177/0013164419832063>.
Last updated 7 months ago
7.18 score 30 stars 1 packages 14 scripts 393 downloads